Undergraduate Student @ SUSTech (EEE Department)
南方科技大学(SUSTech)电子系 本科生
Email: 12312326 [at] mail.sustech.edu.cn
Hi, I am a third-year undergraduate student at the Artificial Intelligence Lab of Southern University of Science and Technology, under the supervision of Professor Zhihai He (IEEE Fellow). I am interested in Generative AI, Diffusion Models, and Image Restoration. Currently, I am focusing on Rectified Flow models and their applications in high-fidelity image inversion and semantic editing, and my research interests also include exploring the capabilities of DiT.
你好,我是南方科技大学人工智能实验室的一名大三本科生, 导师是 何志海教授 (IEEE Fellow)。我的研究兴趣主要集中在 Generative AI(生成式人工智能)、Diffusion Models(扩散模型)以及 Image Restoration(图像复原)。 目前,我正专注于 Rectified Flow 模型及其在高保真图像反演(Inversion)和语义编辑中的应用。同时,我也对探索 DiT 的潜能保持着浓厚的研究兴趣。
Proposed a high-order inversion method for rectified flow models using a Runge–Kutta solver, enabling state-of-the-art fidelity and precise semantic control via Decoupled Diffusion Transformer Attention (DDTA).
提出了一种基于 Runge–Kutta 求解器的 Rectified Flow 模型高阶反演(Inversion)方法。通过引入解耦扩散 Transformer 注意力机制(DDTA),实现了目前最优的重建保真度与精确的语义控制。
Developed a generative semantic coding framework integrating image generation with deep compression via rectified flow models, enabling ultra-low bitrate visual communication.
开发了一种生成式语义编码框架,通过 Rectified Flow 模型将图像生成与深度压缩相结合,实现了超低比特率的视觉通信。
Developed auxiliary plug-in SR modules for MeanFlow and SDXL-Turbo pipelines. Trained on HPC clusters (8×A100 GPUs) using a custom dataset derived from DIV2K and Flickr2K. Achieved one-step super-resolution conditioned on reference images.
为 MeanFlow 和 SDXL-Turbo 开发了辅助的外挂式超分(SR)模块。在 HPC 集群(8×A100 GPUs)上使用基于 DIV2K 和 Flickr2K 构建的自定义数据集进行训练,实现了以参考图像为条件的单步超分辨率重建。
Designed an autonomous AI agent for the 2048 game. Open-sourced implementation on GitHub.
设计并实现了一个全自动玩 2048 游戏的 AI Agent。代码已在 GitHub 开源。